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Abstract. The present work is about the application of Artificial Intelligence 

and in particular Computer Vision approaches for the analysis and classification 

of Ground Penetrating Radar (GPR) B-Scan radargrams gathered during a GPR 

data acquisition campaign for the diagnostic study, performed by the National 

Technical University of Athens (NTUA), for the assessment of the preservation 

state of the Holy Aedicule of the Holy Sepulcher. The analysis of those data re-

vealed the Aedicule’s structural layers and most important indicated the cause 

of the historical building pathology. Thus, GPR’s importance for scientific sup-

port to decision making throughout diagnosis complex historical structures is 

demonstrated in practice in cases such as: revealing structural layers, defect ar-

eas and voids. The objective of this study is to extract the knowledge coming 

from the typical analysis of B-Scan radargrams, based on which the various 

structural layers derived, omitting this way several manual data preprocessing 

and time-consuming steps. The study employs a Deep Learning architecture, 

known as U-Net, where an image segmentation approach has been followed to 

build and train a classifier able to discriminate the various structural layers de-

tected by the original measurements of radargrams.  
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1 Introduction 

Non-Destructive Testing (NDT) comprise of a wide group of techniques finding use 

in the science, technology, and industry sectors mainly for the evaluation of the mate-

rial/component/system properties by causing the minimum possible damage [1]. 

When it comes to cultural heritage assets (e.g. monuments), one of the most promi-

nent aspects to be considered for the assessment of the preservation state, is its integ-

rity affection to the minimum possible extend throughout the diagnostic process. 

Thus, NDT approaches are widely utilized for minimal invasion as they could provide 

important knowledge regarding the current preservation state of the monument [2], 

[3], [4]. Even though that such techniques play an important role to the historic build-
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ing diagnostics and monitoring, each one of them presents certain limitations that 

could be overcome even by combining with various NDTs or/and with Artificial In-

telligence (AI) approaches. On the one hand, combining various Non-Destructive 

Techniques (NDTs) has been already managed for diagnostic, maintenance and moni-

toring purposes for various case studies [5], [6], suggesting the NDTs as an ideal tool 

to determine pathology before any interventions and monitor the effects after it will 

take place. On the other hand, the emergence of AI has provided researchers with new 

innovative tools to enhance traditional approaches [7], [8].  

Recent years, Ground Penetrating Radar (GPR) technique seem to gather great in-

terest as an NDT approach taking into account the various applications [9]. This is 

due to GPR’s advantages such as portability, low cost and reasonable budget of the 

initial investment, ease of data acquisition, high versatility in terms of multipurpose 

applications, as it can be utilized from infrastructure maintenance and large area sur-

veys to environmental investigations and cultural heritage protection. Despite the 

advances, the most prominent disadvantage of GPR is the need of data post pro-

cessing not only during their acquisition but also later during the interpretation as-

sessment phase. Signal processing is a prerequisite step to filter out irrelevant and 

keep useful information and is not advisable to be automated as different use cases 

might have different needs (i.e. increased resolution instead of high penetration depth) 

whereas, pattern recognition automation could enhance human interpretation for effi-

cient detection and characterization with the utilization of AI approaches. This is the 

purpose of the present study further described in the coming sections where after the 

signal processing step, the various structural layers are recognized and denoted before 

feeding in the classification model which makes the prediction of the particular pat-

tern. 

2 Use Case: The Holy Aedicule of the Holy Sepulchre 

Α unique monument located in Jerusalem being the most important site of Christiani-

ty, as it is the place where Jesus Christ was buried and resurrected is the Holy Ae-

dicule of the Holy Sepulchre [10]. It is actually a complex structure, embedding rem-

nants of the original structure (Holy Rock) and the Tomb of Christ, as well as the 

many construction phases, of its rich history of almost two millennia, throughout 

which it was destroyed, reconstructed restored and rehabilitated many times [11], 

[12], [13], [14]. Some years after the latest restoration works took place to amend the 

destruction caused by a catastrophic fire in the Church of Resurrection in 1808, the 

Holy Aedicule of the Holy Sepulchre confronted with deformation issues upon its 

facades. The Holy Aedicule rehabilitation that was completed in March 2017 by 

NTUA aimed to address the deformation problems encountered, according to the 

findings and proposals of NTUA’s diagnostic study [15]. The phases of the rehabilita-

tion works, follow a strict timeline starting from the dismantling of the facades build-

ing stones, the cleaning of the disintegrated mortars, the repointing of the joints, and 

the grouting and reinforcement of the structure, to the cleaning, protection and reposi-

tioning of the building stone [5].  
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The main purpose of the present work is the development of a tool for enhancing and 

supporting pattern recognition within GPR B-Scan radargrams on the exterior surfac-

es of the Holy Aedicule of the Holy Sepulchre and make use of the knowledge ac-

quired during the rehabilitation works. This subsequently will lead to a methodologi-

cal approach for achieving automated pattern recognition. 

3. Ground Penetration Radar Image creation 

3.1 The GPR technique 

Ground penetrating radar (GPR) is a non-destructive geophysical technique which is 

based on the propagation and spatial/temporal analysis of electromagnetic radiation 

transmitted through the prospected structure. A typical GPR consists of two antennae 

(one emitting and one receiving, often included in the same casing), a main unit that 

controls the electromagnetic pulse and a display unit. Short electromagnetic waves 

(pulses) are emitted from the GPR antenna located on the surface of a structure and 

are transmitted through low-loss dielectric materials within the prospected volume. As 

presented in Fig. 1. The receiving GPR antenna (co-located with the emitting anten-

na) detects the reflected electromagnetic wave from within the prospected volume 

which corresponds to primary reflections, multiple echoes from secondary reflections 

or wave interference phenomena [16]. 

GPR can detect variations in the dielectric properties of the materials which can be 

used to identify sub-surface features, structures and layers or different humidity levels 

within the structures or soil investigated. The GPR surveys are typically conducted 

either in 2-D or 3-D approaches. The most common approach and the one utilized in 

this study, is the 2-D approach where the GPR antenna (typically combines emitting 

and receiving dipoles) moves along a profile, whereas the spatial position of the an-

tenna is recorded. At, regular intervals, ateach point along the path, the GPR transmit-

ter antenna emits a short electromagnetic pulse. The co-located receiving antenna 

records the intensity of the receiving pulse for the duration of a pre-set time window 

(in the order of nanoseconds). As a result, at each point a point-trace is received 

which records the intensity of the received pulse vs the two-way time. As the antenna 

casing moves along the path, the procedure is repeated and corresponding point traces 

are received.  

For ease of display, the point traces are not presented as “wiggle” traces (i.e. much 

like a oscillograph). Instead, each wiggle trace is converted by the GPR software into 

a pixelized line, where the color or the gray-scale intensity of each pixel corresponds 

to the intensity (positive or negative) of the received pulse whereas the pixel’s loca-

tion along this line corresponds to the two-way time that the pulse was received. By 

placing each of these pixelized lines next to each other, an “image” of the prospected 

section is received. The horizontal axis of this image corresponds to the position of 

the GPR antenna, whereas the vertical axis of the image corresponds to the two-way 

time for the pulse. The color or gray-scale intensity of each pixel of this image corre-

sponds to the intensity of the received signal. The location of each pixel defines the 

position of the antenna over the surface (x-axis) and the two-way time that the intensi-
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ty of the pixel corresponds to. Note that since the vertical axis of such an image is not 

scaled in distance unit, but in units of time, it is not readily convertible to distance 

units. The reason is that the electromagnetic pulse propagates with different velocities 

depending on the electromagnetic properties of the materials. Thus, if the layering of 

the prospected structure is not known in detail, exact pulse velocities per layer cannot 

be easily attributed, and thus the conversion of the vertical axis from time-units into 

distance-units is not easily performed. Often, however, an average pulse velocity is 

assigned, to aid in the conversion of the vertical axis into depth. 

 

 

Fig. 1. Left: Principle of operation and configuration of GPR. Right: Schematic overlay of 1-D 

point traces, as the GPR antenna moves along the horizontal path over the prospected surface, 

in order to create a 2-D section of the soil. 

After the application of various signal filters (e.g. time-zero adjustment, background 

removal, gain enhancement, band pass filtering, predictive deconvolution) a radar-

gram is created in the form of a 2-dimensional tomographic section of the prospected 

area like the one presented in Fig. 2. This data post-processing is due to the low reso-

lution (decreased sensitivity in centimeter-sized targets) GPR signals and the frequen-

cy of the GPR transmitted electromagnetic waves (the higher the pulse frequency the 

more intense the wave amplitude attenuation). Thus, signal processing improves the 

interpretation of the GPR raw data by increasing temporal resolution (with the use of 

deconvolution and denoising filters) [16]. On the one hand, signal processing is a 

prerequisite manual step to filter clutter and noise out of useful information and can-

not be automated as different use cases might bring different needs (i.e. increased 

resolution instead of high penetration depth). On the other hand, pattern recognition 

automation could enhance human interpretation for efficient detection and characteri-

zation with the utilization of AI approaches. This is more evidently presented in the 

following section where after the signal processing step, the various structural layers 

are recognized and denoted before feeding in the classification model.  
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Fig. 2. A) Typical non-processed radargram over the Marble relief of Christ resur-

rection within the burial chamber of the Holy Aedicule; B) After application of the 

data processing filters; C) Application of predictive deconvolution to radargram; D) 

Application of the Stolt F-K Migration routine to radargram [17]. 

3.2 Structural layers identification in GPR analysis – Input data for Deep 

Learning 

A typical radargram over the façade panel S4 of the Holy Aedicule with a horizontal 

west-east orientation at a height level of 120cm is presented in Fig. 3. The blue-

colored wiggle trace indicates the temporal variation of the received pulse when the 

GPR antenna was over a position 10cm from the starting point. The higher intensity 

values of the pulse signal at certain depths corresponds to the presence of interfaces 

within the masonry (or alternatively of very different electrical properties of the mate-

rials) which result in significant reflections originating from these locations. 

The GPR user studies each radargram (scan) and based on their experience as well 

as available documentation (plans, descriptions etc.) tries to identify and mark each 

target observed within. Those 2-D scans are then “connected” in a 3-D software to 

describe identified features (e.g. underground pipes, or masonry layers). In cases 

where extensive and well overlapping 2-D scans are not feasible, the 3-D imaging of 

the prospected structure is not a trivial task. The use case of the Holy Aedicule [17] is 

exactly that, as its structure has exterior surfaces that did not allow the conduction of 

extensive long parallel and/or transverse GPR scans. Instead, due to the morphology 

of the exterior surfaces, GPR prospection was limited to small, isolated areas of each 

façade, allowing the implementation of small-length horizontal or vertical scans. 

Moreover, there was no prior information regarding the internal layering of this struc-

ture, especially regarding the potential presence of remnants of the original rock. 
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Fig. 3. Radargram at façade panel S4, with a horizontal west-east orientation, at a height level 

of 120 cm, after processing and depth conversion. A single wiggle trace is displayed above the 

radargram which facilitates the discrimination of the various surface layers. 

A series of 19 selected distance vs. time GPR scans, coming from two façade pan-

els (N3 and N4), were processed (signal filters) and target identification was per-

formed for each scan aiming to annotate the main masonry layers, i.e. the exterior 

stone panel, the filler mortar, the masonry, the Holy Rock and an unidentified area, as 

presented with colors in Fig. 3. This is a typical image segmentation problem and the 

approach and methodology followed to resolve it is described in the coming session.  

4. Methodology  

4.1 Data pre-processing 

As described in the previous section, the eventual dataset utilized for the needs of this 

study consists of 19 images illustrating the Holy Aedicule of the Holy Sepulchre ma-

sonry multilayer patterns examined during the diagnostic survey campaign, took place 

prior to the rehabilitation. Those layers have been revealed during the rehabilitation 

works and the certain scans measurement (ground truth images) have been validated 

on hands. The ground truth images contain at most 5 different areas, corresponding to 

the various material layers: 1) external stone panel, 2) filler mortar, 3) masonry, 4) 

Holy Rock and 5) an area where the interpretation of GPR radargrams is not consid-

ered reliable due to the increased depth and pulse attenuation. This is described as a 

typical computer vision image segmentation problem where there are 5 different col-
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ors/masks each of those depict a different ground pattern found in the original image; 

red for stone panel, white for filler mortar, green for masonry, blue for Holy Rock and 

black for the area where GPR measurements are not considered reliable due to wave 

attenuation. A pair of source - ground truth images is presented in Fig. 4. 

 

Fig. 4. The left figure shows the original image of the ground pattern, while the right one de-

picts the ground truth labels. 

The first section of the data processing is described in Fig. 5 and is related to the 

preparation of the data used for the training/validation of the model. The initial size of 

both the source and the ground truth images is approximately 339x528 pixels. Since 

the number of the source images was small, it was necessary to break the images into 

several patches in order to train the model appropriately. Below, the pre-processing 

stages are presented shortly: 

 In this stage, both the source and the ground truth images were cropped perimetri-

cally to ensure the absence of potential border abnormalities and to achieve a 

common shape among the images. The new shape of the image is approximately 

310x510. 

 In this step, the images were split in a certain number of patches. The exact size of 

the patches along with the distribution of the patches in the image area was deter-

mined using trial and error techniques. 

 At this point, a multichannel image/array was created for each ground truth image. 

Each channel of the new array corresponds to a single label of the initial ground 

truth image. Thus, the multichannel image/array has the following shape: patch 

Width x patch Height x 5. 

 Finally, the train, validation and test sub-datasets are produced by using 70%, 20% 

and 10% of the initial number of patches respectively. 

The training and validation datasets are used to train and validate the model, de-

scribed in the coming section, whereas test dataset is utilized for the assessment of the 

model. 
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Fig. 5. Data pre-processing workflow followed to conclude in the train, validation and test 

datasets for training validating and evaluating the model performance  

4.2 Convolutional Neural Network U-Net Architecture 

U-Net neural networks are based on the fully convolutional network class which 

through modification or/and extension of their architecture, they can yield high preci-

sion image segmentation with just a few training images [18]. The main concept be-

hind these networks, compared to common convolutional neural networks, is to sup-

ply the latter by successive layers, utilizing up-sampling operators resulting in the 

increase of the output resolution, making the successive layer to learn to assemble a 

precise output. The large number of feature channels within up-sampling operators 

allow the network to propagate context information to higher resolution layers. In this 

way, the contracting path is less or more symmetric to the expansive part, giving a U-

shaped architecture. To make a pixel prediction in the border region of the image, the 

input image is mirrored, and the missing context is extrapolated. The utilized UNet 

model architecture is illustrated in Fig. 6 summarizing its major features in:  

 Blue arrows depict the combination of convolution and ReLU operations. 

 Red arrows represent the Max-Pooling operations, resulting in the decreasing of 

the patch size. 

 Yellow arrows symbolize the up-sampling operations. 

 Copy and concatenation procedures take place across the green arrows. 
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Fig. 6. U-Net model Architecture 

After the training of the model on the corresponding training data of the dataset, 

the U-Net model is assessed on the test dataset. The procedure of evaluation is sum-

marized in the following steps: 

 The model generates the multichannel prediction of the current image patch. Each 

channel represents the corresponding color of the different ground truth layers. 

 The multichannel patch is being converted to a single RGB patch. 

 The predicted image is being reconstructed by the corresponding predicted patches. 

 The original ground truth image is being reconstructed by the corresponding 

ground truth patches. 

 Both the original and the predicted reconstructed images are combined to generate 

the evaluation metrics. 

The learning curve, generated during the training process, is presented in Fig. 7. On 

the one hand, the validation loss stops improving after the 3
rd

 epoch and begins to 

decrease afterward making a kind of oscillation. On the other hand, the training metric 

continues to improve as the model seeks to find the best fit for the training data. Thus, 

the best model fit is achieved when the validation error is at its’ lowest level (3
rd

 

epoch), after which overfitting takes over, suggesting the need for training the model 

with more data. 
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Fig. 7. Model learning curve where best fit is achieve at the 3rd training epoch 

4.3. Model Assessment 

The model assessment pipeline is presented in Σφάλμα! Το αρχείο προέλευσης της 

αναφοράς δεν βρέθηκε., where after the model is trained and validated over the train 

and validation sets, respectively, the test dataset is used to generate the model predic-

tions. Model predictions then are compared with the original test dataset in pixel level 

and the model performance is evaluated upon the accuracy, precision, recall and f1 

score metrics for each one of the 5 different classes. 

 

Fig. 8. Model assessment pipeline 

The evaluation results for every class are illustrated in Fig. 9. Classes 0, 1, 2, 3, 4 

correspond to the colors black, red, green, white, blue and subsequently to the respec-

tive structural layer of the original ground truth image, presented accordingly in Ta-

ble 1. The model achieves great performance for classes 0 and 1 (black, red) especial-

ly with regards to the accuracy and precision metrics whereas performance for classes 

2 and 3 (green, white) is more mediocre. In particular, the accuracy for class 2 is al-
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most 99% suggesting that the model has correctly predicted observation over the total 

observations for this class but as its lacks symmetry with respect to the other classes 

(this area correspond to the stone panel which is smaller compared to the others) the 

other metrics has to be accounted for the assessment. The ratio of correctly predicted 

positive observations to the total predicted positive observations (precision) is almost 

80% while recall (the ratio of correctly predicted positive observations to the all ob-

servations in the actual class) and f1 score (the weighted average of precision and 

recall.) is above 80% suggesting a very high model performance for the specific class. 

More mediocre model performance is achieved for classes 2 and 3 while model seem 

to underperform for class 4 having approximately 60% accuracy and less than 50% 

for all the other metrics. 

 

Fig. 9. Test set evaluation metrics. Classes 0, 1, 2, 3, 4 correspond to the colors black, red, 

green, white, blue of the original ground truth image accordingly 

Table 1. Allocation of classes, colors and the RGB values with the respective structural layers 

Class ID Color  RGB Value Structural Layer 

0 Black  (0, 0, 0) Unidentified area 

1 Red (255, 0, 0) Stone panel 

2 Green (0, 255, 0) Masonry 

3 White (255, 255, 255) Filler mortar 

4 Blue (0, 0, 255) Holy Rock 

 

Discussion and Conclusions 

The main purpose of the present work is the development of a tool for enhancing and 

supporting pattern recognition within GPR B-Scan radargrams that will subsequently 

lead to a methodological approach for achieving automated pattern recognition. The 

applied methodology must be evaluated as a supporting “tool” for the GPR user to aid 

them in pattern recognition. GPR is a geophysical method, and as such relies heavily 
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on the materials di-electric properties of the prospected area and structure under ex-

amination. The identified features are in effect differentiation of materials’ electrical 

properties, and not necessarily true interfaces. Moreover, like most NDTs applied on 

CH assets benefit from prior knowledge of some basic information regarding their 

structural layers; However, in CH applications this is more than often the exception 

rather than the norm. Nonetheless, the current work emphasizes the potential for pat-

tern recognition in GPR as a supporting tool for GPR analysis.  

The use case selected (Holy Aedicule) in fact demonstrates the feasibility of the 

developed methodology, despite the limited performance of the classifier for certain 

classes. It should be emphasized that the pre-processing of the GPR raw data is still 

necessary since filtering of the raw data actually “brings-out” useful information hith-

erto “hidden” within the instrument “noise”. Specialized GPR software is used for 

this, therefore the raw data cannot, yet, be used directly for this methodology. 

Moreover, at this stage of development, the GPR scans used are distance vs. time 

scans and not the more user-friendly distance vs. depth scans. The reason is that the 

conversion of timescale into depth-scale, requires the definition of appropriate veloci-

ty models in the GPR software used. These velocity models, nonetheless, require 

knowledge of the actual layering of the structure examined as well as the values for 

the pulse velocity per layer, so that the time-depth transformation can proceed. This, 

arguably, contradicts the main scope of this attempt, in the sense that if the user al-

ready knows the layering of the structure, then they do not potentially need this meth-

odology. However, this regards the second level (future work) of analysis, where deep 

learning will identify layers in time-scaled GPR radargrams, suggest appropriate ve-

locity models, with which the GPR software can convert the radargrams in depth-

scaled tomographies. The user may then either fine tune the velocity models, or alter-

natively use these results to identify the required features in the examined structure 

and assess its layering or state of preservation. 

Another aspect that needs consideration is the limited number of images used to 

train the model as 19 images in a computer vision image segmentation classifier with 

5 classes are considered few. This, in turn, highlights the importance of the validation 

and test datasets and especially the way they are determined for the model evaluation 

as an inappropriate choice of validation (3 images) and test (1 image) datasets could 

lead to radical different model performance. The need of including more data is im-

perative and is coming as a future work to supplement this study as there are suffi-

cient number of data coming from the rest of external stone panels but first need to be 

manually preprocessed as described above after examining the possibility of using the 

distance vs. depth GPR scans. Despite the limitations and drawbacks, the models’ 

classification performance is quite promising and accounting or/and resolving some 

or all of the limitations will lead to the development of a methodological approach for 

achieving automated pattern recognition in GPR radargrams. 
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